Examples of capacity building program: Biodiversity Research Center

Pavel Kindlmann, coordinator

Department of Theoretical Ecology

Institute of Systems Biology and Ecology

České Budějovice, Czech Republic

Biodiversity Research Center

- one of the Centers of Excellence
- financed by the Czech Ministry of Education
- unifying top groups working on biodiversity in the CR
- duration: 2006-2010 (2011?)
- total budget ~ 70 millions CZK

Biodiversity Research Center

Academy of Sciences:

- 1. Institute of Systems Biology and Ecology (coordinator)
- 2. Institute of Entomology
- 3. Institute of Botany
- 4. Institute of Vertebrate Biology
- 5. Institute of Animal Physiology and Genetics

<u>Universities:</u>

- 1. Charles University, Prague
- 2. Masaryk University, Brno
- 3. University of South Bohemia, CB

Biodiversity Research Center (ISBE group – Dept. Theor. Ecol.)

- Pavel Kindlmann
- Jana Jersáková
- Adriana Rico (Bolivia)

PhD students:

- Iva Schödelbauerová
- Kateřina Kintrová
- Olga Ameixa (Portugal)
- Bishnu Bhattarai (Nepal)
- Prakash Kumar Paudel (Nepal)
- Tamara Malinová

Rollandia microptera Conservation Program

- non-flying species
- freshwater lakes
- endemic to altiplano of Peru & Bolivia
- individuals nest along the coastal areas
- nests in Schoenoplectus californianus totora
- many birds, (esp. juveniles), killed in fishermen nets
- numbers of birds decline

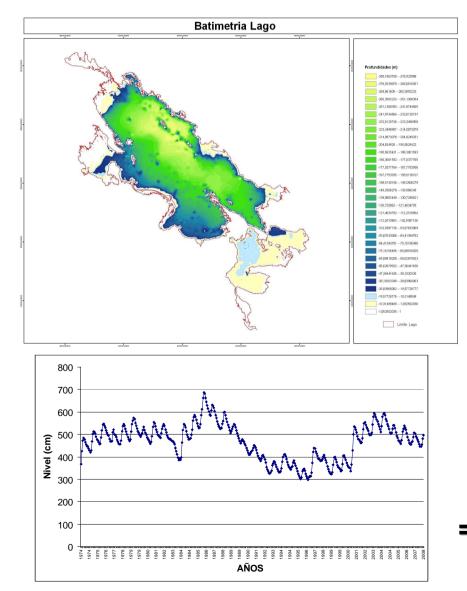
Conservation issues:

- Decline really caused by nets?
- Would quotas, complete ban help?

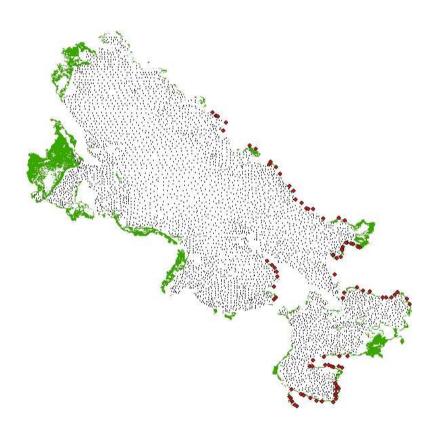
Rollandia microptera Conservation Program

<u>Data available:</u>

- population stage structure (chicks, juveniles, adults)
- 4 censuses
- 24 sites
- fishing intensity (# nets, # fishing days)
- mesh size used



Analyses to be done:


- Leslie matrix model: growth rate, elasticity analyses
- growth rate x fishing intensity, mesh size

Rollandia microptera Conservation Program

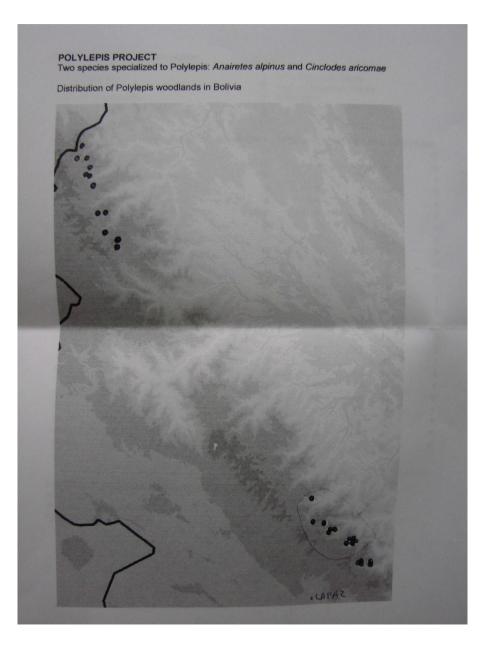
Lake depth

Area & density of totorales

=> Prediction of core totorales areas

Anairetes alpinus Conservation Program

- highest altitudes of the Cordilleras
- occurs locally in the high Andes of Peru and Bolivia
- habitat severely fragmented
- undergoing a continuing decline (extent, area, and quality)

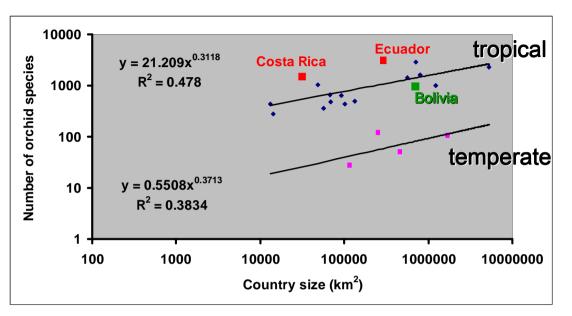

Threats:

- heavy grazing
- uncontrolled use of fire
- cutting for timber, firewood

Anairetes alpinus Conservation Program

Data available:

- GPS coordinates of the sites
- numbers of individuals
- site areas
- % Polylepis in the forests
- altitude
- metapopulation structure


Analyses to be done:

- numbers dependent on ?
 - patch connectivity
 - forest size
 - Polylepis numbers
 - water closeness

Orchid Biodiversity Conservation Program

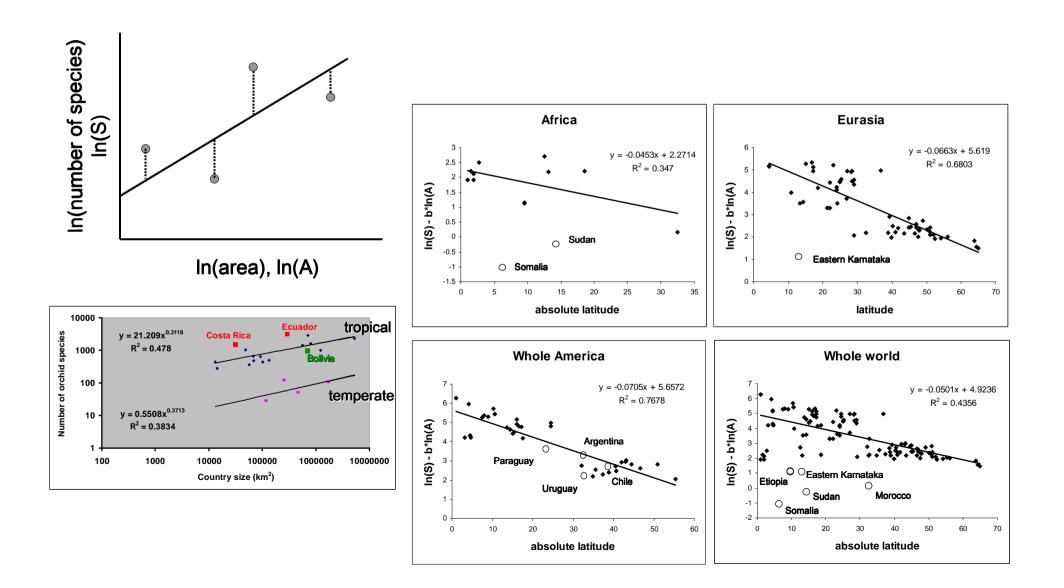
- reproductive success in Masdevalia
- species-area relationships
- is the distribution uniform within the forest?

Orchid Biodiversity Conservation Program - global

Field data:

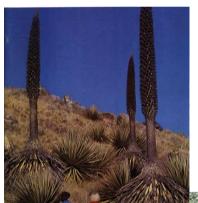
- 100 transects
- 100 randomly selected trees per transect
- presence-absence

Outputs:


- Species-abundance
- Species-area
- Comparison of species diversities

Regions:

- Chitwan, Nepal
- Annapurna region, Nepal
- Yungas, Bolivia
- others ...


Orchid Biodiversity Conservation Program

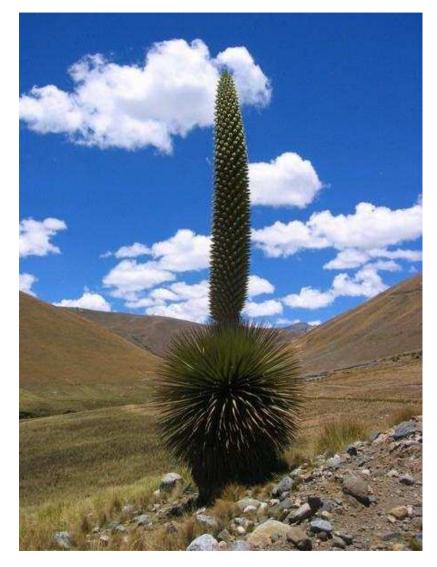
Residuals:

Puya raimondii Conservation Program

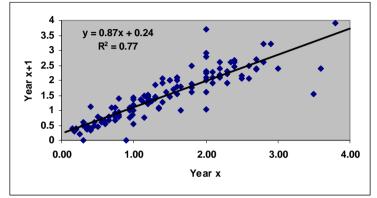
- largest bromeliad
- 3 m tall in vegetative growth
- flower spike 9-10 m tall
- endemic species of the zone altoandina
- Peru and Bolivia
- altitude of 3200 4800 m
- blooms once after 80-150 years of growing then it dies

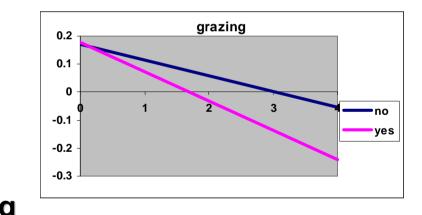
• only 28 years to flower from seed (California-Berkeley Bot. Garden)

Puya raimondii Conservation Program



Data available: Biometric measurements


(2 censuses):


- width
- height
- grazing
- fire
- neighboring plants

Puya raimondii Conservation Program

Analyses to be done:

grazing

Effects of:

- fire
- neighboring plants

Minimum flowering size = ?

Tiger Conservation Program (Chitwan NP)

tiger x ungulates

predator-prey system: driven by what?

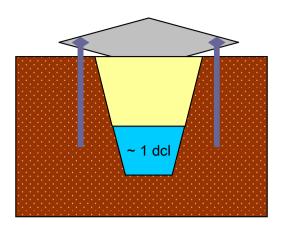
- trophic relations?
- territoriality?

Hypotheses:

- 1. Change in ungulate community has a direct impact on tiger population dynamics.
- 2. The predator's diet reflects the relative abundances of individual prey species.
- 3. Tiger numbers have a direct impact on their prey community.
- 4. Tiger resorts to livestock (or even human) killing, if its usual prey is too scarce.

Tiger Conservation Program (Chitwan NP)

Experience from the cooperation with local researchers:


- Taxonomic knowledge usually good
- Problems with interpretation, data analysis, sensible data collection

AGRIPOPES

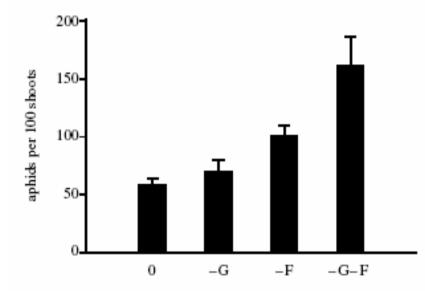
AGRIcultural POlicy-Induced landscaPe changes: effects on biodiversity and Ecosystem Services

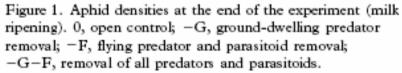
Groups:

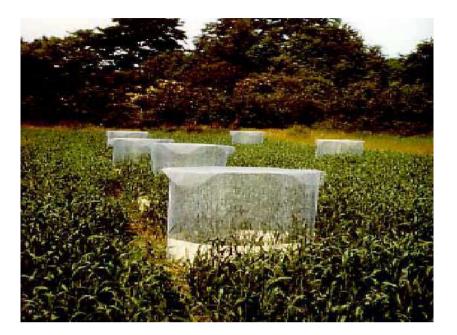
- Czechia, Poland, Lithuania
- Germany 1, France, Sweden

Determined by the Czech group:

• The Netherlands, Ireland, Spain, Germany 2

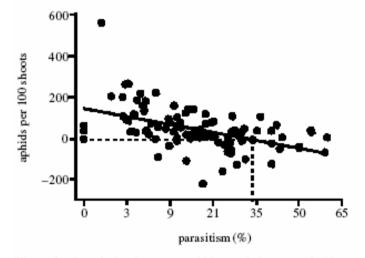
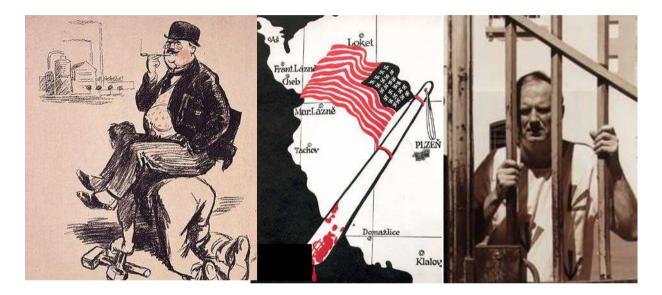

Taxonomists lacking in the West!

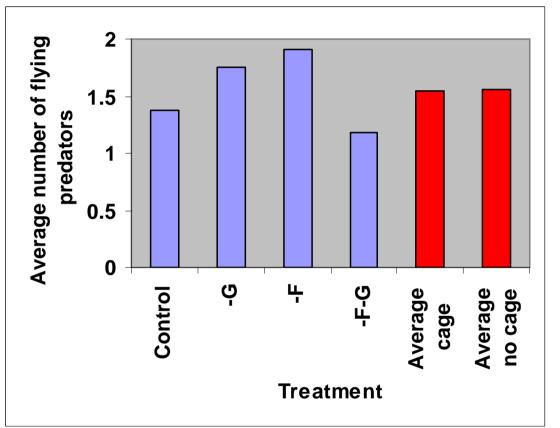



Received 27 March 2003 Accepted 27 May 2003 Published online 25 July 2003

Relative importance of predators and parasitoids for cereal aphid control

Martin H. Schmidt^{1*}, Andreas Lauer¹, Tobias Purtauf², Carsten Thies¹, Matthias Schaefer³ and Teja Tscharntke¹


Figure 2. Correlation between aphid population growth (the difference in aphid density between wheat flowering and milk ripening) and (arcsine-transformed) parasitism. r = -0.49, n = 96 plots, p < 0.001. $y = 149 - 3.8_X$.

Effect of communist Czechoslovakia

Cages do not exclude the predators at all!

- Sample size large: (32 caged +32 uncaged plots) * 6 countries
- Explanation mesh size (8 mm) too large!
- Why not tested?
 - Pest control by natural enemies seductive idea
 - Too much time spent in front of the screen at the expense of field work

Return from computers back to nature!

- Need to educate young taxonomists
- Need to bring them closer to nature

- •Western Europe processes
- Central & Eastern Europe taxonomy

- Some training center for young taxonomists?
- Regular conferences, meetings, field courses, PhD students supervision?

Castle in Nove Hrady – a possible venue for something like International Centre for Theoretical and Conservation Biology?

Lecture rooms...

Offices...

Accommodation...

Nature around...

Upcoming events:

- 2010 Conservation ecology course (R. Primack et al.)
- 2011 International Congress on Orchid Conservation

Other possible events:

- Taxonomic summer school every 2 years
- Conservation ecology courses field courses combined with theory
- Population ecology courses

Big question – money...

- Premises available (Nove Hrady and others)
- Running costs long term support needed

Possible sources:

- RTN?
- Marie Curie?
- European commission?
- Anything else??

Thank you!